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A new three-dimensional numerical program that incorporates com- 
prehensive real gas property models has been developed to simulate 
supersonic reacting flows. The code employs an implicit, finite volume, 
Lower-Upper (LU), time-marching method to solve the complete 
Navier-Stokes and species equations in a fully coupled and very 
efficient manner. A chemistry model with nine species and eighteen 
reaction steps is adopted in the program to represent the chemical reac- 
tions of H, an air. To demonstrate the capability of the program, flow 
fields of underexpanded hydrogen jets transversely injected into the 
supersonic airstream inside the combustors of scramjets are calculated. 
Results clearly depict the flow characteristics, including the shock 
structure, the separated flow regions around the injector, and the 
distribution of the combustion products. 0 199zAcademic PEW IX 

INTRODUCTION 

Recent developments in hypersonic, air-breating vehicles 
have stimulated attempts to apply numerical methods to 
simulate related flow fields. The objective of the present 
research is to develop a three-dimensional fluid dynamic 
code for studying mixing and chemically reacting flows 
inside supersonic combustion ramjet (scramjet) engine. 

The LU numerical scheme adopted in the present 
research [ 1 ] is formulated based upon eigenvalue upwind- 
ing. This method has the efficiency and robustness of an 
implicit scheme, with an operational count comparable to 
that of an explicit scheme. This special feature of the LU 
scheme is very important for three-dimensional calculations 
of large systems of equations for chemically reacting flows. 
In this paper, the capability and advantages of the LU 
scheme as well as the vectorization strategy are elaborated. 

Previously, a two-dimensional computer code using an 
LU scheme has been developed [2, 31. This program is 
capable of simulating chemical reacting flows with finite 
rate or equilibrium chemistry. We have used it to simulate 
the flow field of the combustion of a hydrogen jet trans- 
versely injected into a supersonic airstream [2] as well as 
hypersonic inlet flows at Maths 10 and 13 [3]. Results 

predicted by the two-dimensional code compared favorably 
with the experimental data and other numerical solutions. 
In this paper, the two-dimensional code is extended to three 
dimensions. As shown in the following sections, the 
advantage of the LU scheme is greatly magnified in the 
three-dimensional flows. 

As numerical examples, the flow fields of a hydrogen jet 
interacting with a supersonic cross airstream are calculated. 
First, the code was applied to simulate McDaniel’s experi- 
ment [4], which was a non-reacting mixing flow field. The 
predicted results compare favorably with experimental data 
in terms of the penetration depth of the fuel injection. Then, 
the chemical reacting flows of single-injection and dual- 
injection into cross airstream are calculated. The finite rate 
chemistry model adopted involves nine chemical species 
with eighteen reaction steps. Because of the efficiency of the 
LU scheme, the three-dimensional calculation for chemi- 
cally reacting flows is well within the current computer 
capability. 

ANALYSIS 

For three-dimensional chemical reacting flows with N, 
species, the governing equations can be cast into vector 
form in Cartesian coordinates as 

~+~(E-E,)+~(F-F,)+~(G-G,)=H (1) 
z 

where 

(2) 
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where p is the density, and u, u, and w are the velocity 
components in the x, y, and z directions, respectively. Here 
p is the pressure and e is the specific total energy, which 

(3) is defined as 

Ns 

e= 1 Y,ei+~(u2+v2+w2), (10) 

uzxy + 

0 

t XY 

z YY 

5 YZ 

uzyy + WTyr - 
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uz,, + uzyzv + wz,, - qz 
- p!Gi Yi 

H= 

r=l 

where Yi and ei are the mass fraction and specific internal 
energy for species i. zXy , zyz, r,,, z,,, tyy, and zz, are shear 

(4) and normal stresses. Because the summation of the mass 
fractions of all the chemical species is one, only N, - 1 
species equations need to be solved. In the energy equation, 
4x9 qy, and qz represent the energy fluxes due to heat 
conduction and species diffusion. They can be expressed as 

(5) 
qx= -kg+p F hiY,lii 

1=1 

qy= -kE+p t h;Y;O, 
aY i=l 

(11) 

q,= -kg+p f h;Y;ti;, 
i=l 

(6) 
where hi is the enthalpy of species i. The diffusion velocity 
components, iii, 6,, and Gi are calculated by Fick’s law [S], 

(7) 

(8) 

(9) 

y.fi,= -D. 3 , I ‘m ay 

y;$; = -Dim z, 

where 

(12) 

(13) 

is the effective binary diffusivity of species i in the gas 
mixture and Xi is the mole fraction of species i. 

The pressure and temperature are calculated interatively 
from the equations 

e= $ y,h,-E +Qu2+v2+w2) (14) 
i=l P 2 

h;=h;+j= CPidT 
T,i 

(15) 

(16) 
i = 1, 2, 3, . . . . N, - 1, 
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where h: is the heat of formation of species z’, C,, is the 
constant pressure specific heat of species i, and W, the 
molecular weight of species i. Equation ( 16) is the equation 
of state for a gas mixture of N, species. 

The constant pressure specific heat C,, thermal 
conductivity, viscosity, and diffusivity for each species are 
determined by fourth order polynomials of temperature, 
such as 

ki = a, + a, T+ a2 T2 + a3 T3 + a4 T”. (17) 

The coefficients of these polynomials are supplied by 
Gordon and McBride and are valid up to a temperature of 
6000 K [6]. The specific heat of the gas mixture is obtained 
by mass concentration weighting. The thermal conductivity 
and viscosity of the gas mixture are calculated using Wilke’s 
mixing rule [7]. The binary mass diffusivity between species 
is obtained using the Chapman-Enskog theory in conjunc- 
tion with the Lennard-Jones intermolecular potential 
energy functions [ 71. 

As noted in Eq. (9), the right hand side of the species 
equations contains source terms (hi). These terms represent 
the generation or destruction of species i due to chemical 
reactions. The stochiometric equation of a set of N, 
elementary reactions involving N, species is 

,j= 1, 2, . . . . NR, 

where Ci is the mole concentration of species i. K, and K,, 
are reaction rate constants and are given by the Arrhenius 
form [5] 

(19) 

The rate of change of species i by reaction j is 

K’, fj Cy:l-Kb, fj Cyr) (20) 
i= I i= 1 

The total rate of change of species i is 

(21) 

The energy equation has no source term because both the 
sensible energy and the heat of formation of each species are 
included in the total energy (e) and the enthalpy (hi) 
(Eqs. (14) and (15)). 

In the present study. a nine-species and eighteen step 
chemistry is adopted. These species include Hz. H. OH, 
H,O, 0, 02, HOz, H,O,, and N1. This model is a reduced 
HZ-air reaction system developed by Brabbs [8]. For 
turbulent flows, the closure of the governing equations is 
provided by the Baldwin--Lomax model [9] and constant 
turbulent Prandtl and Schmidt numbers (Pr, = SC, = 0.9 1. 
This model is chosen for its simplicity and computational 
efficiency. 

NUMERICAL METHOD 

The LU scheme adopted in the present study was 
originally developed by Yoon and Jameson [ 11. In deriving 
the discretized counterpart of the governing equations, 
Yoon and Jameson proposed using backward and forward 
relaxation sweeps in the diagonal directions to invert the 
implicit operator and obtained the Lower-Upper Sym- 
metric Successive Overrelaxation (LU-SSOR) scheme. In 
this paper, a different derivation procedure is taken. The 
linearized governing equations are 

dQ d 
x+pl+AndQ) 

=~+!%+~+H”+T”AQ. (22) 
d. 

where the Jacobian matrices A, B, C, and Tare defined as 

‘42 B=dt’ l3G 1 

aQ’ 8Q’ “=a 
T=$ (23) 

and the superscript n denotes the time step. Note that the 
source terms of the species equations in finite rate calcula- 
tions are treated implicitly. According to Bussing and 
Murman [lo], treating the source terms implicitly is equiv- 
alent to resealing the characteristic times of the governing 
equations and thus stabilizing the numerical calculations. 
Viscous terms in Eq. (22) are not linearized and are treated 
explicitly to reduce complexity. 

In deriving the Jacobian matrices A, B, and C, it is 
necessary to evaluate the derivatives with respect to other 
unknown variables. For perfect gas, this procedure is rather 
straight forward due to the usage of the relations h = C, T 
and C,/C, = y, where C, and y are both constants. For reac- 
ting flows, the species composition of the gas mixture varies 
spatially and the specific heats (C, and C,) of each species 
are functions of temperature. Thus, special treatment must 
be adopted in obtaining the pressure derivatives. A simple 
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remedy is to use the so-called “equivalent specific heat ratio where h& = C Y;(hE - jp C,r dt). Since only N, - 1 species 
(i)” Clll, equations are actually solved, Eq. (25) needs to be 

h rearranged to the form 
>: - sm I- 

N,- I 

(24) 
p=(‘y^-1) pe- c pYihE. 

i=l 

where h,, and esm are the sensible enthalpy and internal 
energy of the gas mixture, respectively. In general, y^ is func- 
tion of both thermodynamic and flow properties. However, 
Colella and Glaz [ 121 had shown that this function varies 
very slowly with respect to other properties. Thus, f is 

-( 
N,- I 

P- C PYi 
> 

hFv, 
,=I 

-;(u2+L’2+w2) 
1 

Ns-I 

=(j--1) 
[ 

pe-ph&- 1 pYi6hE 
i= I 

treated as a local constant. By this assumption, we obtain 
the expression of pressure, -g(u2+z12+w2)J, (26) 

P = (Y^ - 1) pesm 

pe-phfm-f(u2+02+w2) 1 where dh:. = hi. - hiv 
(25) A is 

. The final form of the Jacobian matrix 5 
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where q2 = u2 + u2 + w2. The form of the matrices B and C implicit treatment of the chemical source terms and is of the 
are similar to that of A. The Jacobian matrix T represents form 
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In the actual coding, dhJdp, d&;/apu, dhi/dpu, and 
&hJdpw are taken as zero since they are usually small. 
However, for combustion under extreme condition, e.g., 
detonation wave, it is necessary to include these terms. The 
terms iXj/apY, can be readily obtained through Eqs. (20) 
and (21). 

For the lower and upper splitting, let 

A=A++A 

B=B++B- 

c=c++c-, 
(29) 

where A +, A-, B’, B-, C+, and C are constructed such 
that the eigenvalues of the matrices have the same sign as 
the superscripts. Of the many ways of splitting the Jacobian 
matrices, Jameson and Turkel’s method [ 131 is adopted, 

A + = 0.5(A + ya I) 

A = 0.5(A - yAI), 
(30) 

where 

~~2max(I~~I). (31) 

Here 1, is the maximum eigenvalue of Jacobian matrices A. 
Substituting Eq. (29) into Eq. (22) and performing the first 
order upwinding difference according to the sign of the 
eigenvalues gives the equation 

[Z+dt(D;A+ +D,;A- +D,B+ +DtBp 

+D,C++D+C-T)]dQ=dtRHS, (32) 

where D:, D,:, and 0’ are forward-difference operators, 
and D;, D;, and 0; are backward-difference operators. 
In Eq. (32), 

RHS= -$-“-z 
ay 

aE; aF:: ac: 
+x+-+x+H’. 

ay 
(33) 

Equation (32) can be expanded in discretized form to 
produce 

NAQ,-At T,AQ+ 

+$ (A,l,j,k’Qi+l,j,k-A:--,j,k’Qi~~,,,k) 

+$ (B,+ I,k AQ,j+ 1.k -BTj- i,k AQi,,-- I,k) 

+~wz~,,k+l AQi,j,k+l-C&,k-l AQi,j,k-1) 

= At RHS, (34) 

where N includes all the diagonal terms except the matrix I 
and can be expressed as 

N= I+g (A;+,.k -Ai,,.kJ+$ (B/f,., --B/.,.4 1 

Equation (34) can be approximately factorized depending 
on the sign of the Jacobian matrices: 

1 N+-$(A ,+l.j,k)+~(Bi,,+,,k)‘~(c-.k+l)l N I 

N-At T-2 (A: ,.,.k) 

-~(B,~~,k)-~(C,‘,,k-,)]AQ 

= At RHS. (36) 

Note that matrix N is diagonal. This can easily be verified 
by substituting Eq. (30) into the definition of N [Eq. (35)] 

1 +~~yn+illy,Jr~y, 
AY 

(37) 

Thus, N-- ’ is also diagonal and can be moved to the right 
hand side of Eq. (36). One then obtains 

[ ( 
I+ At D,fA- + D,;B- + D;+C-- 

+ + + 
I Aj;k I Bi,j,k I ‘;;k 

AY )I 
1 D,A++D,B++D,C+ 

(38) 

Note that for non-reacting or chemical equilibrium calcula- 
tions, there is no source term in the governing equations, 
and the matrix inversion is avoided without using the 
diagonalization technique. In fact, the two operators in 
Eq. (38) require only scalar inversions. For finite-rate 
chemistry calculations, the second operator of Eq. (38) 
requires a block diagonal inversion which resulted from the 
implicit treatment of the source terms. However, since the 
flow equations (the continuity, momentum, and energy 
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equations) have no source term, the first five rows of the 
second operator in Eq. (38) have nonzero terms only in the 
diagonal. Thus, for the chemically reacting flows, the second 
operator can be inverted in two separate steps: scalar 
diagonal inversions for the flow equations and block 
diagonal inversion for the species equations. In addition, the 
inclusion of the terms iGi/apu, &hJapv, and &hJapw in the 
matrix T does not change the aforementioned inversion 
procedure. After the scalar inversion of the flow equations, 
the extra terms can be readily moved to the right hand side 
before the block inversion proceeds. 

The standard second order central difference is adopted 
for the discretization of the right hand side. Jameson’s artiti- 
cial damping [l] is used for the numerical stability. This 
artificial viscosity includes two parts: the second order and 
fourth order dampings. The fourth order one is applied to 
the whole flow field whereas the second order one is turned 
on whenever there is shock to prevent numerical oscillation 
caused by shock. Details of the artificial viscosity and 
stability analysis of the numerical scheme are provided in 
Ref. [13]. 

PROGRAM VECTORIZATION 

The newly developed three-dimensional program has 
been efficiently vectorized. Usually, implicit schemes cannot 
be vectorized as efficiently as explicit schemes because of the 
recursive property in solving the implicit operators. For 
instance, the well-known AD1 scheme [ 141 requires invert- 
ing tridiagonal matrices in three directions. Such inversion 
involves forward and backward substitutions which are 
both recursive. In i-sweep, for example, the solution of a 
point (i j, k) depends upon (i - 1, j, k) in forward substitu- 
tion, and upon (i + 1, j, k) in backward substitution. 
However, points in a constant-r’ plane can be parallel- 
processed, and a program using the AD1 scheme can be 
vectorized in two dimensions. The implicit operator of the 
LU scheme also has a recursive property. In the LU scheme, 
the solution of the point (i, j, k) requires updated values of 
points (i- 1, j, k), (i, j- 1, k), and (i j,k- 1) in the Lower 
sweep; and updated values of (i + 1, j, k), (i, j + 1, k), and 
(i j, k + 1) in the Upper sweep. Similar to the AD1 scheme, 
points in a plane normal to the sweeping direction can be 
parallel-processed. The difference is the sweeping direction. 
For the LU scheme, the parallel-processing planes can be 
represented by a relation between the indices, i + j+ k = 
constant. The schematic of these planes for the Lower sweep 
is shown in Fig. 1. The vectorization of the LU-scheme 
program is also two-dimensional; however, the indices of 
the points in a parallel-processing plane are not as 
organized as those of the AD1 scheme. 

The program is vectorized by reorganizing the indices of 
the grid points for the parallel-processing planes. Before the 

Computational Domai 
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FIG. 1. Schematic of parallel-processing planes for the LU scheme 

main iteration begins, mappings between the three-dimen- 
sional index (i, j, k), and two sets of two-dimensional 
indices (ipoint, @rune), are generated for the Lower and 
Upper sweeps. The index ipoint identifies the points in a 
parallel-processing plane, and iplane identifies the planes. 
These mappings are stored as sets of integer arrays which 
can be invoked by L and U sweeps. On CRAY computers, 
the mapping arrays can be used directly in DO-loops to 
achieve efficient vectorization. On CDC/CYBER com- 
puters, vectorization is done by gathering and/or scattering 
the vector elements on the basis of the mapping arrays. 

The efficiency of vectorization depends upon the strategy 
as well as the vector-processing architecture. Note that the 
strategy described results in short vectors near the Lower 
and Upper corners. For two reasons these inefficient vector- 
processing regions near the corners do not constitute a 
significant efficiency-reduction on the CRAY we use. First, 
the vector length becomes rapidly larger as the distance 
between the plane and the corners increases. (The vector 
length is approximately proportional to the square of the 
distance.) Second, CRAY’s maximum computation speed 
can almost be reached with a rather short vector-length 
(e.g., 100). This property helps to reduce inefficient vector- 
processing regions. In fact, the CPU time for the implicit 
operator is reduced by a factor of nearly 10 simply by the 
described strategy. The vectorization of the RHS is 
relatively straightforward. In principle, three-dimensional 
vectorization is possible for the RHS. However, our 
experience on the CRAY shows very little difference among 
one-, two-, and three-dimensional vectorizations due to its 
architecture. The program is therefore vectorized in one 
dimension for better readability. 
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FS 

McDaniel’s Data 

FIG. 2. McDaniel’s Experiment: (a) geometry; (b) comparison ofpredicted and experimental jet penetration for single-port injection; (c)comparison 
of predicted and experimental jet penetration for dual-port injection. 

RESULTS 

To demonstrate the capability of the newly developed 
three-dimensional code, numerical examples of a transverse 
jet interacting with supersonic cross-flow are calculated. 
This flow phenomenon is of great interest because it is 
relevant to the fuel injection and mixing problem in scramjet 
engines. 

In the first example, the program is applied to simulate 
the supersonic non-reacting mixing experiment reported by 
McDaniel and Graves [4]. In this experiment, iodine 
seeded air simulated the fuel injected into a Mach 2 cross 
stream. The fuel penetration was then visualized by the 
laser-induced fluorescence of iodine. The edge of the fuel jet 

P=8 atm 

p=l 
M=4 

L=0.024 m 
H=O.Ol m 
'rl=O.O1404 111 
L,=O.OO-5 m 
0-0.0012 m 

FIG. 3. 

was determined photographically and compared with the 
contour plot of the mass fraction of 0.01 of the fuel jet. The 
configuration of the experiment is illustrated in Fig. 2a; 
the comparisons between the experimental data and the 
theoretical prediction for both one-hole injection and two- 
hole injection in the supersonic cross-flow are shown in 
Figs. 2b and 2c. The predicted results compared favorably 
with the experimental data in terms of the penetration depth 
of the injected fuel in the supersonic cross-flow. 

The computer code is then applied to calculate the chemi- 
cally reacting flow fields of H, transverse jets injected into a 
Mach 4 airstream. Two cases were calculated: a single-injec- 
tion and a dual-injection as shown in Fig. 3. A square duct 
and nozzle holes compose the flow configuration, in which 

w=o.o1404 m 
L =0.006 m 
L1=o.oo6 m 

D=Lo.O012 m 
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the width is 1.404 cm and the height is 1 cm. The diameter 
of the injecting port is 0.12 cm. The injector is at the top 
wall of the duct and the injectant flows downward to interact 
with the cross-flow. For the single-hole injection case, the 
center of the injector orifice is located at a distance of five 
times of the diameter of the injecting orifice in the 
streamwise direction from the leading edge and one-half of 
the duct width in the cross direction. For the two-hole 
injection case, the first hole is located at the same position 
as the single-injection case. The second injecting port is at a 
distance of live diameters of the injecting port downstream 
from the first injecting port. The airstream is set to one 
atmosphere and 1300 K at the inlet. At the injection nozzle, 
the pressure is set at 8 atm, and the temperature is 700 K. 
No-slip and adiabatic conditions are used on the top wall. 
At the exit, the gradients of all variables in the streamwise 
direction are assumed to be zero. At both x,u planes (where 
z =0 and Z= 1.404 cm) and at the bottom plane (the xz 
plane with y = 0), the symmetric boundary conditions are 
imposed. 

The convergence curves of the single injection case with 
three different grids are shown in Fig. 4. In about 5000 itera- 
tions, the residual of the coarse grid (5 1 x 2 1 x 2 1) calcula- 
tion reduces about 10 orders of magnitude. For liner grids, 
numerical convergences slow down dramatically. In 5000 
iterations, residuals reduce about live and six orders for line 
(101 x 41 x 41) and medium (71 x 31 x 31) grids. This figure 
ensures us that the code indeed is very stable and can 
converge to the machine’s limit. The results using the coarse 
grid are diffusive. However, insignificant differences were 
observed between the solutions of the fine and medium 
grids. 

For the results shown in the following, for the single- 
injection case, the grid size is 63 x 39 x 43 in the x, y, and z 
directions, respectively, and it took about 8 MW of memory 
on Cray 2. For the dual-injection case, the grid size is 
81 x 39 x 43 and the memory required was about 11 MW. 
The grid spacing is clustered in both the x direction and the 
z direction to resolve the injecting jet, while in the y direc- 
tion the grid is clustered to resolve the wall boundary layers. 
For the present calculation, we stop the computation when 
the residuals reduced about four orders of magnitude; this 
criterion is sufficient for engineering purpose. The CPU time 
required for the single-injection case was about 5 h (grid 
size 63 x 39 x 43) and that of the dual-injection case was 
about 6.5 h (grid size 81 x 39 x 43). 

Figures 5 and 6 shows the Mach number and temperature 
contours on the yz planes for various x locations. Just 
behind the injecting orifice, the Mach number contour 
shows a strong bow shock very close to the wall. Under the 
bow shock, the circular Mach number contour indicates the 
existence of the barrel shock structure. The jet has been bent 
and flows almost parallel to the primary flow. The penetra- 
tion of the jet increases as the flow moves downstream. The 

No. of Iterations 

FIG. 4. Convergence history of the single injection case with three 
different grids. 

i 3.0 

x=2.19ca 

FIG. 5. Mach number contours on yz planes at various x locations for 
case 1. 

f 

x=Z.l9cm 

FIG. 6. Temperature contours on yz planes at various x locations for 
case 1. 
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shape of the jet also deforms as the flow moves downstream 
because streamwise vorticity is present in the lee of the injec- 
tor. The secondary motion formed by two counterrotating 
vortices gives the bent-over jet a kidney shape. In the 
temperature contour plots, the hottest region is along the 
wall because of the viscous dissipation of the high speed 
flow enhanced by the combustion of H, and air. Away 
from the wall, comparing the Mach number plots and the 
temperature plots reveals that the temperature increases 
after the bow shock. Further downstream, a thin flame zone 
characterized by higher temperature develops. 

Figures 7 and 8 depict the mass fraction contours of 
hydrogen and water. At the injecting orifice, the mass frac- 
tion of water is zero and that of hydrogen is one. Hydrogen 
diffuses into the airstream and consumed by chemical reac- 
tion as the jet flows downstream. Water is produced in the 
mixing layer between the jet and the airstream; a flame zone 
characterized by a high concentration of water can be cleary 
seen. 

To give a thorough picture of the flow, contour plots in 
the xy plane across the orifice are also presented. Figure 9 
shows the Mach number contours on the xy plane right at 
the center of the injecting port (cf. Fig. 3). Separated regions 
in front of the jet and in the lee of the jet which are 
mainly caused by the Prandtl-Meyer expansion of the 
underexpanded jet and by the blockage of the primary flow 
by the jet are clearly shown. In scramjet engines, these 
separation zones provide a longer fuel residence times as 
well as better-fuel-air mixing, resulting in a better flame 
holding capability of the combustor. Figure 10 illustrates 
the pressure contours on the xy plane. The jet partially 
blocks the supersonic cross-flow, resulting in a bow shock 
and a strong pressure gradient around the injector. In the 
wake region of the injector, a pressure deficit and relatively 
small gradients of streamwise velocity develop. The lower 
pressure in the wake induces a lateral inward motion, and 
very near the jet, a reverse flow occurs. Figure 11 shows the 
temperature contour on the xy plane. Again, the hottest 
region is along the wall. The flame zone extends from the 
hot region near the wall to the primary mixing zone between 
the fuel-rich core and cross-stream air. 

Figure 12 shows the mass fraction contours of hydrogen. 
The recirculating flow in front of the injecting port entrains 
a large amount of hydrogen due to the Prandtl-Meyer 
expansion of the injected fuel. In the lee of the injecting port, 
hydrogen diffuses into the airstream and is consumed by the 
chemical reactions. But far downstream of the flow field, the 
core of the fu’el jet still contains 50 % of the fuel. This situa- 
tion is greatly improved by adding one more fuel injection 
in the lee of the first injecting port. Figure 13 shows the mass 
fraction contour of water, which is the main product of the 
chemical reactions. Again, the flame zone is clearly discern- 
ible between the cold fuel jet and the hot airstream. The 
value of the water mass fraction in the flame zone varies 

FIG. 7. Mass fraction of Hz on yz planes at various x locations for 
case 1. 

x=l.blcm 

x=2.19cm 

FIG. 8. Mass fraction of Hz0 on yz planes at various x locations for 
case 1. 
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FIG. 9. Mach number contour on the xy plane at the center of the 
injection port for case 1. 
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FIG. 10. Pressure contour on the xy plane at the center of the injection 
port for case 1. 



LU SCHEME FOR REACTING FLOWS 285 

1200 
1400 

FIG. 11. Temperature contour on the xy plane at the center of the 
injection port for case 1. 

FIG. 15. Temperature contour on the xy plane at the center of the 
injection port for case 2. 

FIG. 12. Mass fraction of H2 on the xy plane at the center of the FIG. 16. Pressure contour on the xy plane at the center of the injection 
injection port for case 1. port for case 2. 
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FIG. 13. Mass fraction of H,O on the xy plane at the center of the FIG. 17. Mass fraction of H, on the xy plane at the center of the 
injection port for case 1. injection port for case 2. 

FIG. 14. Mach number contour on the xy plane at the center of the FIG. 18. Mass fraction of H,O on the xy plane at the center of the 
injection port for case 2. injection port for case 2. 
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between 0.22 to 0.25. Although not shown, the amount of 
the intermediate species OH was relatively high in the flame 
zone, indicating the characteristic time for chemical reaction 
is comparable to the flow residence. Thus, the flow does not 
reach chemical equilibrium. 

Figures 14 to 18 shows the solutions of the dual-injection 
case. Similar physical features of the flow around the first 
port were observed. However, because the first fuel jet 
blocks the main airstream, the second fuel jet experiences a 
much stronger expansion, as seen in the Mach number, 
pressure, and temperature contours. Thus, hydrogen from 
the second injecting port has a much better chance penetrat- 
ing into the cross airstream. Also note that the flow field 
between the two injecting ports and the area just inside the 
lee of the second port are largely subsonic and recirculating. 
These regions are particularly interesting and can be 
responsibe for flame holding and fuel-air mixing. 

CONCLUDING REMARKS 

A new three-dimensional code using an LU scheme for 
calculating chemically reacting flows in scramjets has been 
developed. Detailed physical models simulating chemical 
reactions and gas mixture for supersonic reacting flows has 
been incorporated. The program is efficient and robust, par- 
ticularly for three-dimensional calculations. The code has 
been tested by calculating the non-reacting binary mixing of 
a sonic jet transversely injected into a supersonic cross-flow. 
The penetration depth of fuel jet predicted by the code com- 
pared favorably with experimental data. The code is then 
applied to simulate the chemically reacting flow field of an 
underexpanded hydrogen jet transversely injected into a 
supersonic hot airstream. The results clearly depicted the 

shock structure, recirculation region, and the flame zone 
In the dual-injection case, because the first jet blocks the 
primary flow, the second jet can penetrate deeper into the 
airstream and has more complete combustion. 
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